434 research outputs found

    Pathogenic Variant Spectrum in Breast Cancer Risk Genes in Finnish Patients

    Get PDF
    Recurrent pathogenic variants have been detected in several breast and ovarian cancer (BC/OC) risk genes in the Finnish population. We conducted a gene-panel sequencing and copy number variant (CNV) analysis to define a more comprehensive spectrum of pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, BARD1, RAD51C, RAD51D, BRIP1, and FANCM genes in Finnish BC patients. The combined frequency of pathogenic variants in the BRCA1/2 genes was 1.8% in 1356 unselected patients, whereas variants in the other genes were detected altogether in 8.3% of 1356 unselected patients and in 12.9% of 699 familial patients. CNVs were detected in 0.3% of both 1137 unselected and 612 familial patients. A few variants covered most of the pathogenic burden in the studied genes. Of the BRCA1/2 carriers, 70.8% had 1 of 10 recurrent variants. In the other genes combined, 92.1% of the carrier patients had at least 1 of 11 recurrent variants. In particular, PALB2 c.1592delT and CHEK2 c.1100delC accounted for 88.9% and 82.9%, respectively, of the pathogenic variation in each gene. Our results highlight the importance of founder variants in the BC risk genes in the Finnish population and could be used in the designing of population screening for the risk variants

    Suuren riskin rintasyöpäalttiuden seuranta on geenikohtaista

    Get PDF
    Suuren riskin rintasyöpäalttiutta naiselle aiheuttaviin geeneihin luetaan Suomessa geenit, joiden patogeenisiin variantteihin liittyy yli 40 %:n elinikäinen rintasyöpäriski. Tällaisia ovat BRCA1, BRCA2, PALB2, PTEN, TP53, STK11 ja CDH1. • Varianttien kantajien seuranta vaihtelee geenikohtaisesti. • Miesten rintasyöpään ovat yhteydessä ainakin BRCA1, BRCA2 ja PALB2. • Geeneihin liittyy lisääntynyt riski sairastua moniin muihinkin syöpiin.Peer reviewe

    Polygenic risk score is associated with increased disease risk in 52 Finnish breast cancer families

    Get PDF
    The risk of developing breast cancer is increased in women with family history of breast cancer and particularly in families with multiple cases of breast or ovarian cancer. Nevertheless, many women with a positive family history never develop the disease. Polygenic risk scores (PRSs) based on the risk effects of multiple common genetic variants have been proposed for individual risk assessment on a population level. We investigate the applicability of the PRS for risk prediction within breast cancer families. We studied the association between breast cancer risk and a PRS based on 75 common genetic variants in 52 Finnish breast cancer families including 427 genotyped women and pedigree information on similar to 4000 additional individuals by comparing the affected to healthy family members, as well as in a case-control dataset comprising 1272 healthy population controls and 1681 breast cancer cases with information on family history. Family structure was summarized using the BOADICEA risk prediction model. The PRS was associated with increased disease risk in women with family history of breast cancer as well as in women within the breast cancer families. The odds ratio (OR) for breast cancer within the family dataset was 1.55 [95 % CI 1.26-1.91] per unit increase in the PRS, similar to OR in unselected breast cancer cases of the case-control dataset (1.49 [1.38-1.62]). High PRS-values were informative for risk prediction in breast cancer families, whereas for the low PRS-categories the results were inconclusive. The PRS is informative in women with family history of breast cancer and should be incorporated within pedigree-based clinical risk assessment.Peer reviewe

    Comprehensive analysis of NuMA variation in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent genome wide case-control association study identified <it>NuMA </it>region on 11q13 as a candidate locus for breast cancer susceptibility. Specifically, the variant Ala794Gly was suggested to be associated with increased risk of breast cancer.</p> <p>Methods</p> <p>In order to evaluate the <it>NuMa </it>gene for breast cancer susceptibility, we have here screened the entire coding region and exon-intron boundaries of <it>NuMa </it>in 92 familial breast cancer patients and constructed haplotypes of the identified variants. Five missense variants were further screened in 341 breast cancer cases with a positive family history and 368 controls. We examined the frequency of Ala794Gly in an extensive series of familial (n = 910) and unselected (n = 884) breast cancer cases and controls (n = 906), with a high power to detect the suggested breast cancer risk. We also tested if the variant is associated with histopathologic features of breast tumors.</p> <p>Results</p> <p>Screening of <it>NuMA </it>resulted in identification of 11 exonic variants and 12 variants in introns or untranslated regions. Five missense variants that were further screened in breast cancer cases with a positive family history and controls, were each carried on a unique haplotype. None of the variants, or the haplotypes represented by them, was associated with breast cancer risk although due to low power in this analysis, very low risk alleles may go unrecognized. The <it>NuMA </it>Ala794Gly showed no difference in frequency in the unselected breast cancer case series or familial case series compared to control cases. Furthermore, Ala794Gly did not show any significant association with histopathologic characteristics of the tumors, though Ala794Gly was slightly more frequent among unselected cases with lymph node involvement.</p> <p>Conclusion</p> <p>Our results do not support the role of <it>NuMA </it>variants as breast cancer susceptibility alleles.</p

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A&gt;T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    ATM variants and cancer risk in breast cancer patients from Southern Finland

    Get PDF
    BACKGROUND: Individuals heterozygous for germline ATM mutations have been reported to have an increased risk for breast cancer but the role for ATM genetic variants for breast cancer risk has remained unclear. Recently, a common ATM variant, ATMivs38 -8T>C in cis with the ATMex39 5557G>A (D1853N) variant, was suggested to associate with bilateral breast cancer among familial breast cancer patients from Northern Finland. We have here evaluated the 5557G>A and ivs38-8T>C variants in an extensive case-control association analysis. We also aimed to investigate whether there are other ATM mutations or variants contributing to breast cancer risk in our population. METHODS: Two common ATM variants, 5557G>A and ivs38-8T>C, previously suggested to associate with bilateral breast cancer, were genotyped in an extensive set of 786 familial and 884 unselected breast cancer cases as well as 708 healthy controls. We also screened the entire coding region and exon-intron boundaries of the ATM gene in 47 familial breast cancer patients and constructed haplotypes of the patients. The identified variants were also evaluated for increased breast cancer risk among additional breast cancer cases and controls. RESULTS: Neither of the two common variants, 5557G>A and ivs38-8T>C, nor any haplotype containing them, was significantly associated with breast cancer risk, bilateral breast cancer or multiple primary cancers in any of the patient groups or subgoups. Three rare missense alterations and one intronic change were each found in only one patient of over 250 familial patients studied and not among controls. The fourth missense alteration studied further was found with closely similar frequencies in over 600 familial cases and controls. CONCLUSION: Altogether, our results suggest very minor effect, if any, of ATM genetic variants on familial breast cancer in Southern Finland. Our results do not support association of the 5557G>A or ivs38-8T>C variant with increased breast cancer risk or with bilateral breast cancer

    A genome-wide association scan on estrogen receptor-negative breast cancer

    Get PDF
    Introduction: Breast cancer is a heterogeneous disease and may be characterized on the basis of whether estrogen receptors (ER) are expressed in the tumour cells. ER status of breast cancer is important clinically, and is used both as a prognostic indicator and treatment predictor. In this study, we focused on identifying genetic markers associated with ER-negative breast cancer risk.Methods: We conducted a genome-wide association analysis of 285,984 single nucleotide polymorphisms (SNPs) genotyped in 617 ER-negative breast cancer cases and 4,583 controls. We also conducted a genome-wide pathway analysis on the discovery dataset using permutation-based tests on pre-defined pathways. The extent of shared polygenic variation between ER-negative and ER-positive breast cancers was assessed by relating risk scores, derived using ER-positive breast cancer samples, to disease state in independent, ER-negative breast cancer cases.Results: Association with ER-negative breast cancer was not validated for any of the five most strongly associated SNPs followed up in independent studies (1,011 ER-negative breast cancer cases, 7,604 controls). However, an excess of small P-values for SNPs with known regulatory functions in cancer-related pathways was found (global P = 0.052). We found no evidence to suggest that ER-negative breast cancer share
    • …
    corecore